Forecasting the amount of demand for Arba'in pilgrimage by Iranian pilgrims using discrete gray Markov model

Document Type : Original Article

Authors

1 Imam Hosein (as) University

2 Department of Systems Management, Faculty of Management and Economics, Imam Hossein University, Tehran, Iran.

Abstract

data-based Future studies is one of the guides and pathfinders for managers and decision makers in making decisions. Today, forethought,, prediction and forecasting is one of the key areas of management and is highly necessary and important. In this research, for this purpose, using the discrete Markov gray model, the amount of demand for Arbaeen pilgrimage tourism by Iranian pilgrims in the target area has been predicted. The tourism industry is one of the key industries of today's societies. One of the key branches of this industry on a global scale is a branch called tourism of religious places, which is categorized and researched in religious thought under the specific title of pilgrimage, and in general, it is a form and part of tourism that somehow visits It is related to one of the holy places and usually the shrines and tombs of religious elders. One of the most important places of pilgrimage in the world is the holy city of Karbala, which is the shrine of the third Imam of the Shiites, Imam Hussein (peace be upon him) and his brother, Abbas bin Ali (peace be upon him). Every year, on the 40th day of his martyrdom (Day of Arbaeen), a large number of pilgrims walk the distance from Najaf to Karbala. In recent years and after the fall of the Baath regime dictatorship in Iraq, it has become possible for a large number of people to attend this pilgrimage ceremony. For several years, the Corona epidemic affected the growing trend of Arbaeen pilgrims, but with the resumption of the Arbaeen pilgrimage, it is natural that the governments related to this event should make more detailed plans and designs to hold this ceremony more magnificently.

Keywords


Smiley face

  1. بد، مهدیه. (1398). ابررویداد اربعین، جلوه‌ای از گردشگری دینی. فصلنامه هنر و تمدن شرق، 7(23)، 5-14.
  2. تیموری، ایرج و حکیمی، هادی. (1396). برآورد تقاضای سفر گردشگران ایرانی به ترکیه با استفاده از شبکه‌های عصبی مصنوعی. نشریه جغرافیا و برنامه‌ریزی، 21(61)، 145-127.
  3. زندی، ابتهال و یعقوب‌زاده، رحیم. (1400). پیش‌بینی تقاضای گردشگری فرهنگی شهر تهران. مطالعات راهبردی فرهنگ، 1(2), 82-59.
  4. مظفری‌چنیجانی، سیده فرشته و رحمت‌آبادی، اعظم. (1397). نقش فرهنگ زیارت اربعین در تشکیل تمدن نوین اسلامی. چهارمین کنگره بین‌المللی فرهنگ و اندیشه دینی. قم: موسسه سفیران فرهنگی مبین -دانشگاه قم.
  5. یعقوبی، علی؛ چاوشیان، حسن و فرهادی محلی، مجتبی. (1397). پدیدارشناسی تجربه پیاده‌روی اربعین: (موردمطالعه کاروان ایرانی زیارتی کربلا- عراق 1396). کنفرانس ملی توسعه اجتماعی. اهواز: دانشگاه شهید چمران -انجمن جامعه‌شناسی ایران.
  6. Chadha, H., & Onkar, P. (2016). Changing Cities in the Perspective of Religious Tourism – A case of Allahabad. Procedia Technology, 24, 1706-1713.
  7. Cohen, E. (1992). Pilgrimage centers: Concentric and excentric. Annals of Tourism Research, 19(1), 33-50.
  8. Ghasvarian Jahromi, K., & Ghasvarian Jahromi, V. (2018). Using Discrete Hidden Markov Model for Modelling and Forecasting the Tourism Demand in Isfahan. Journal of Information Systems & Telecommunication, 6(2), 112-118.
  9. Hu, S. (2017). Prediction of city traffic accidents based on grey Markov chain model. Revista de La Facultad de Ingenieria, 32(4), 144-151.
  10. Hu, Y. C. (2017). Predicting foreign tourists for the tourism industry using soft computing-based Grey-Markov models. Sustainability (Switzerland), 9(7), 15-20.
  11. Hu, Y. C., Jiang, P., Chiu, Y. J., & Tsai, J. F. (2017). A novel grey prediction model combining Markov chain with functional-link net and its application to foreign tourist forecasting. Information (Switzerland), (2017), 8(126).
  12. Hu, Y. C., Jiang, P., & Lee, P. C. (2018). Forecasting tourism demand by incorporating neural networks into Grey–Markov models. Journal of the Operational Research Society, 70(1), 12-20.
  13. Li, G. (2009). Tourism demand modeling and forecasting: A review of literature related to greater china. Journal of China Tourism Research, 5(1), 2-40.
  14. Li, X., Pan, B., Law, R., & Huang, X. (2017). Forecasting tourism demand with composite search index. Tourism Management, 59, 57-66.
  15. Mujtaba Husein, U. (2018). A phenomenological study of Arbaeen foot pilgrimage in Iraq. Tourism Management Perspectives, 26, 9-19.
  16. Ozer, S. U., Ersoy, G. K., & Tuzunkan, D. (2012). DARK TOURISM IN GALLIPOLI: Forecast Analysis to DeterminePotential of AustralianVisitors. Procedia - Social and Behavioral Sciences, 41, 386–393. https://doi.org/10.1016/j.sbspro.2012.04.045
  17. Shen, S., Li, G., & Song, H. (2011). Combination forecasts of International tourism demand. Annals of Tourism Research, 38(1), 72-89.
  18. Song, H., & Li, G. (2008). Tourism demand modelling and forecasting-A review of recent research. Tourism Management, 29(2), 203-220.
  19. Song, H., & Turner, L. (2006). Tourism demand forecasting. In International Handbook on the Economics of Tourism (PP. 89-114), Edward Elgar.
  20. Sun, S., Wei, Y., Kwok-Leung Tsui, & Wang, S. (2019). Forecasting tourist arrivals with machine learning and internet search index. Tourism Management, 70, 1-10.
  21. Sun, X., Sun, W., Jianzhou Wang, Yixin Zhang, & Yining Gao. (2016). Using a Grey–Markov model optimized by Cuckoo search algorithm to forecast the annual foreign tourist arrivals to China. Tourism Management, 52, 369-379.
  22. Vijayanand, S. (2013). Preferences for destination selection and fulfillment of religious obligations: A study of pilgrimage tourism circuit (Velankanni, Nagore and Thirunallar) in Tamilandu. Pondicherry University, India.
  23. Vijayanand, S. (2014). The issues and perspectives of pilgrimage tourism development in Thanjavur. International Journal of Tourism and Hospitality Reviews, 1(1), 45-51.
  24. Wu, Lh.-C., Chang, Y.-Y., & Wu, T.-P. (2019). Pilgrimage: What drives pilgrim experiential supportive intentions? Journal of Hospitality and Tourism Management, 38, 66-81.
  25. Yang, X., Pan, B., Evans, J. A., & Benfu Lv. (2015). Forecasting Chinese tourist volume with search engine data. Tourism Management, 46, 386-397
Volume 3, Issue 3
Autumn Quarterly
January 2023
Pages 143-161
  • Receive Date: 14 August 2022
  • Revise Date: 07 November 2022
  • Accept Date: 16 January 2023
  • Publish Date: 22 November 2022